
A POMDP model-based online risk
mitigation method for autonomous inland

vessels ⋆

Abhishek Dhyani ∗ Yunjia Wang ∗∗∗ Mathias Verbeke ∗∗∗

Davy Pissoort ∗∗ Vasso Reppa ∗

∗ Department of Maritime and Transport Technology, Delft University
of Technology, The Netherlands

(e-mails: {a.dhyani-1, v.reppa}@tudelft.nl).
∗∗ ESAT-WaveCoRe, M-Group, KU Leuven, Belgium

(e-mail: {davy.pissoort}@kuleuven.be).
∗∗∗ Declarative Languages and Artificial Intelligence (DTAI),

M-Group, KU Leuven, Belgium
(e-mails: {yunjia.wang, mathias.verbeke}@kuleuven.be).

Abstract: Autonomous surface vessels (ASVs) increasingly gain appeal in the maritime indus-
try for their high efficiency and improved navigational capabilities. However, risks originating
from various internal and external factors such as faults, traffic, harsh weather conditions,
etc., can affect their guidance and control capabilities and impact nominal vessel operations.
The existing risk mitigation methods mainly focus on the vessel’s guidance system and do not
consider unsafe actions due to the control system. In this paper, we propose a new method based
on a partially observable Markov decision process (POMDP) model for the online risk mitigation
of autonomous inland vessels. The POMDP model-based method utilizes information about
situational awareness to assist the vessel’s planning and control system in real-time decision-
making during hazardous situations, thereby ensuring that the vessel remains in a minimum-risk
condition. Based on the identified risk-influencing factors (RIFs), the transition probabilities
are updated by a Bayesian belief network (BBN). A case study of an autonomous inland vessel
navigating in a confined waterway is presented to demonstrate the capability of the proposed
method.

Keywords: Risk mitigation, Fail-safe, Fail-operational, Partially observable Markov decision
process, Autonomous surface vessels.

1. INTRODUCTION

The escalating demand for cargo transport and the imper-
ative to reduce carbon emissions puts substantial pressure
on existing transportation systems. New challenges in-
cluding increasing road congestion, soaring transportation
costs, and frequent accidents require effective solutions.
Autonomous inland vessels present an attractive potential
solution to many of these challenges, thanks to an exten-
sive network of underutilized rivers and canals. Promoting
inland transportation not only promises to alleviate road
congestion but can also contribute to reducing road fa-
talities. Their economic viability though, stemming from
reduced crew requirements, presents a compelling case for
their implementation. It is crucial to recognize that the im-
plementation of autonomous vessels is not without safety
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challenges. Rigorous safety measures must be undertaken
to ensure their safe integration into the existing inland
waterways infrastructure.

Hazard identification and risk assessment analysis are
essential steps in the design of engineering systems to
ensure their safe and reliable operation. In the context
of autonomous vessels, the use of techniques such as sys-
tems theoretic process analysis (STPA) has been widely
explored in the literature for safety assessment and ver-
ification (Wróbel et al. (2018) and references therein).
Additionally, providing the analysis results as inputs to
the control system during system operation can further
enhance the decision-making capabilities of autonomous
vessels (Thieme et al. (2023)). Arguably, one of the most
critical decision-making tasks is to identify a hazardous
situation and prevent an accident by bringing the system
to a minimum-risk condition (MRC). According to DNV
GL, an MRC is defined as “a temporary as-safe-as-possible
state that the vessel enters when it experiences situations
which, if continued, involves operating outside the safe
operating envelope” (DNV (2018)). These situations can
arise from unsafe actions taken during vessel operation,
originating from factors such as sensor faults, commu-



nication delays, or harsh weather conditions, and can
potentially disrupt nominal operations. In this context,
Bremnes et al. (2020) performed hazard identification for
autonomous underwater vehicles and utilized the results
for constructing a dynamic Bayesian network for risk-
based decision-making. In Utne et al. (2020), a framework
for the online risk modeling and control of autonomous
ships, called supervisory risk control, is proposed. Risk
is evaluated during the operation by a Bayesian belief
network (BBN), which is designed based on the results
of STPA hazard analysis. One of the limitations of using a
risk variable in decision-making (like in Bayesian-based ap-
proaches) for control stems from the quantification, which
will inevitably lead to loss of information (Rothmund
(2023)). Furthermore, it can lead to a scenario with very
low consequences receiving the same risk value as a very
unlikely but high-consequence scenario .

Partially observable Markov decision processes (POMDPs),
on the other hand, can directly model the effect of deci-
sions taken on the system’s state by incorporating them
as “actions” in their framework. Furthermore, unlike the
static structure of Bayesian networks, POMDPs offer a
dynamic modeling approach that enhances their ability
to assess risks more effectively. However, this approach to
risk modeling for ASVs remains unexplored in the liter-
ature, as the number of states and associated properties
in a POMDP model can rapidly proliferate. This could
significantly increase the computational cost of real-time
evaluation, which stands as a key consideration favoring
the adoption of Bayesian networks (Rothmund (2023)).
Furthermore, determining the transition probabilities for
the POMDP model is also a challenge. To address these
limitations, in this work, we propose a POMDP model-
based method for providing risk mitigation support to
the guidance and control system of an autonomous in-
land vessel. Based on real-time observations, the proposed
method prompts the vessel into a safe state, i.e., a state
with minimum risk. The POMDP model is constructed by
using the results of the STPA method for hazard analysis.
It computes a safe control strategy (SCS) by complement-
ing various unsafe control actions with specific recovery
control actions. The state-transition probabilities within
the POMDP model are derived from the results of a BBN,
which updates the probabilities as new inputs are received.
The ability of BBNs to calculate conditional probabilities
is well known and results from their effective mapping of
the cause-and-effect relationships among the variables.

Compared to previous works that focused on hazards af-
fecting the guidance system of an ASV (see, e.g., Utne
et al. (2020); Blindheim et al. (2023)), one of the main
contributions of this work is to propose a risk mitigation
method for the control system of an ASV. The proposed
method provides an updated control strategy, leading to
the vessel modifying its control action and/or the path
followed. Furthermore, to the best of the authors’ knowl-
edge, the application of Markov decision processes for risk
mitigation of ASVs has not been explored in the literature
so far, although it has been applied in other domains, such
as mobile robotics and EMI resilience (e.g., see Zacharaki
et al. (2021); Gonzalez-Atienza et al. (2023)). Finally, to
address the computational issue in solving the POMDP
model online, we propose employing a Monte Carlo tree

search (MCTS) planning algorithm, which has a compu-
tational complexity that is independent of the state or
observation space dimension (Coulom (2006)). The basic
idea behind employing MCTS in POMDP is to estimate
long-term rewards using random simulation by focusing on
the most viable region in the search space.

The remainder of this paper is organized as follows: In
Section 2, the ASV risk mitigation problem is formulated.
In Section 3, the proposed method is described by first
modeling the BBN for computing the POMDP state-
transition probabilities and then constructing the POMDP
model. In Section 4, a case study is presented for an
autonomous vessel in an inland waterway scenario. Finally,
the conclusions are reported in Section 5.

2. ASV RISK MITIGATION PROBLEM

We consider an inland vessel of automation level 3, as
per the CCNR definition of automation level, where the
vessel’s autonomous system is primarily responsible for
navigation. However, the human operator “will be receptive
to requests to intervene and to system failures and will
respond appropriately” (CCNR (2022)). The main objec-
tive of the POMDP model-based method is to provide
risk mitigation support in the form of an SCS. The SCS
is updated to avoid two hazardous situations, namely,
collision with another vessel and grounding of the vessel
while navigating in shallow water.

Firstly, we define the states of the vessel, categorized into
three sets: the safe states Ss, the unsafe states Su, and
the recovery states Sr. The safe states Ss refer to vessel
states where there are no hazardous situations involved
or the vessel is in an MRC. On the other hand, unsafe
states Su correspond to states with a high risk of a
hazardous situation. The recovery states Sr correspond
to the intermediary set of states resulting from applying
a corrective measure to eliminate the hazardous situation.
Similarly, we also define three sets of actions performed by
the vessel’s control system, namely the safe (As), unsafe
(Au), and recovery (Ar) control actions. As is defined
as the set of actions that constitute the vessel control
system’s “control responsibilities”, and ensure that the
vessel stays in a safe state. When the control system
executes an unsafe action from Au, it increases the level of
risk as the system transitions to an unsafe state. Finally,
Ar corresponds to the recovery control actions applied to
bring the system from an unsafe state to a safe state. In
this work, we define the safe control action as:
As1 : Provide the rudders and thruster (R & T) commands
for the steering and propulsion of the vessel to execute the
planned path.

With regard to As1 , the following states of the vessel are
of interest:

(1) Safe states:
(a) Ss1 : The navigational plan is successfully ob-

tained
(b) Ss2 : Vessel follows the desired path

(2) Unsafe states:
(a) Su1 : Vessel does not follow the desired path
(b) Su2

: Vessel violates the safety margin
(c) Su3

: Vessel enters a shallow water-depth area



Table 1. Unsafe control actions (Au) originat-
ing from the control responsibility As1

Control responsibility
provided

Control responsibility
not provided

Control responsibility
provided too early /too
late

Au1 : R&T commands pro-
vided based on incorrect
vessel’s navigational states,
leading to the vessel be-
ing unable to follow the
planned path.

Au2 : R&T commands are
not provided as the vessel’s
navigational states are un-
known

Au3 : R&T commands are
provided too late as the
guidance system provides a
path update too late

Au4 : R&T commands pro-
vided cannot be followed
due to insufficient available
power

Au5 : R&T commands are
not provided as there are
no feasible path options

Au6 : R&T commands are
provided without consider-
ing the effect of external
disturbance, such as wind,
water depth, etc., leading
to the vessel being unable
to follow the planned path.

(d) Su4
: Desired control is not achieved / collision

or grounding risk is not averted
(3) Recovery states:

(a) Sr1 : Updated control action corrects the vessel’s
path and averts the risk

(b) Sr2 : A human supervisor corrects the vessel’s
path

When the action As1 is executed, it leads the vessel to the
safe state Ss2 . Subsequently, by performing an STPA, the
unsafe actions (Au) which could potentially lead the vessel
to an unsafe state, are identified. Unlike traditional hazard
analysis methods, STPA’s systems thinking approach can
help in capturing emerging risks from complex interactions
between various system components (Leveson and Thomas
(2018)). These actions are described as shown in Table
1. Finally, the recovery control actions (Ar) are defined,
which constitute the set of possible control strategies to
direct the vessel to an MRC. These actions correspond to
either the fail-safe or fail-operational actions and must be
selected based on the vessel’s assessment of the existing
risk. Based on class guidelines recommended by classi-
fication societies such as DNV (DNV (2018)), ClassNK
(ClassNK (2020)), and similar fallback strategies proposed
in the literature (for example in Bolbot et al. (2023)),
a total of six recovery control actions are identified, as
mentioned below:

(1) Ar1 : Limp home
(2) Ar2 : Fault-tolerant control strategy is selected
(3) Ar3 : Keep position (DP control strategy is selected)
(4) Ar4 : Human supervision is requested
(5) Ar5 : Move away from the quay and other vessels
(6) Ar6 : Vessel’s speed is reduced

These actions can be further categorized as follows:

(1) Fail-operational strategies: Ar2 , Ar4 , and Ar6
(2) Fail-safe strategies: Ar1 , Ar3 , and Ar5

The fail-operational strategies provide path planning and
control updates that enable the vessel to maintain op-
erations, albeit with possibly reduced performance. In
contrast, the fail-safe strategies guide the vessel to a safe
state and cease its operations. The selection of the SCS is
performed by the proposed risk-mitigation scheme, which
is described in the next section.

3. RISK MITIGATION METHOD

Figure 1a provides an overview of the proposed risk mit-
igation scheme for ASVs. The vessel’s control system can
execute any one of the unsafe actions (Au) identified in
Table 1. These unsafe actions form part of the set of actions
of the POMDP model, along with the set of recovery
control actions (Ar). Additionally, the states of the vessel
are used to construct the states of the POMDP model.
The transition probabilities for the model are calculated
starting with the calculation of risk probabilities, which
are derived from various input sources of the BBN. The
output of the POMDP model is the SCS corresponding
to the hazardous situation encountered. The overall steps
involved in the proposed risk mitigation method are sum-
marised in Algorithm 1. The steps 1–3 of the algorithm,
which involve the BBN, are detailed next.

Algorithm 1 Computation of the safe control strategy
(SCS) for risk mitigation.

Input: Observations O, Rewards R, Discount factor γ, Initial
belief b0, Maximum Iterations
Bayesian Belief Network:

1: Compute the probabilities of input RIFs based on the BBN
inputs.

2: Compute the probabilities of the derived RIFs (PD-RIF) using
equation (1).

3: Calculate the state transition probabilities TAr , based on
their identified dependencies with the derived RIFs and using
statistical data or expert knowledge.
POMDP Model Initialization:

4: Initialize the state space S, action space A, and the observa-
tions O.

5: Set the initial parameters, including the rewards R, transition
probabilities T , discount factor γ, and initial belief b0.
MCTS Algorithm:

6: Initialize the tree with the current belief as the root node.
while no. of iterations < Maximum Iterations, do

7: Select the optimal node using the UCB formula, given by
equation (2).

8: Expand the selected node by adding a child node.
9: Simulate a random playout from the child node.

10: Backpropagate the result of the playout through the tree.
end while

11: Select the action a having the highest expected reward at the
root node.
SCS Calculation:

12: Compute the SCS by using equation (3).
Output: SCS ∈ {Ar1 , . . . , Ar6}

3.1 Bayesian Belief Network (BBN)

A BBN is a graphical method that employs a directed
acyclic graph for probabilistic reasoning. It comprises var-
ious nodes representing the variables of interest, for which
the respective probabilities are computed using Bayesian
reasoning. We use the BBN to compute the transition
probabilities for the POMDP model based on inputs from
various metrological and communication sources, such
as onboard sensors, AIS, electronic navigational charts
(ENC), metocean services, sensor monitoring modules,
etc. The first layer of the BBN consists of the variables
or nodes representing the input risk-influencing factors
(RIFs), which can be directly computed from the afore-
mentioned sources. Each of the input RIFs has the states



(a) (b)

Fig. 1. (a) Proposed online risk mitigation scheme for autonomous inland vessels. For the Bayesian network, the
observations comprise the inputs for determining the input RIF probabilities (see Table 2 for the list of input
sources). Further, the POMDP model receives as observations the noisy states of the vessel. The output of the
risk mitigation scheme is a Safe Control Strategy (SCS), selected from the set of possible recovery control actions
Ar.(b) Proposed structure of the BBN for computing the POMDP model’s transition probabilities.

mentioned in Table 2 and is associated with a risk proba-
bility. In this work, we consider six input RIFs, namely, the
communication link, fairway constraints, traffic density,
navigational sensor health, weather conditions, and vessel
speed. In addition to quantitative information such as
sensor measurements, the risk probabilities can also be es-
timated using available qualitative information, including
existing regulations and expert judgment (Fenton and Neil
(2018); Utne et al. (2020)). However, a detailed discussion
of their calculation lies outside the scope of this work.

As shown in Figure 1b, these inputs are further mapped
within the BBN into the derived RIFs, namely, connectiv-
ity to the vessel, safe navigational options, measurement
of vessel’s navigational states, and trajectory tracking per-
formance. This structure of the BBN is inspired by the
work in Utne et al. (2020), where the modeling is done
based on the causal factors identified through STPA. The
derived RIFs’ risk probabilities are computed under the
assumption of the independence of input RIFs, using

PD-RIF =

k∏
i=1

kPI-RIF, (1)

where PI-RIF represents the probabilities associated with
the input RIFs calculated by using the BBN inputs, and
k is the number of nodes in the input layer connected to
the derived layer node. Finally, these risk probabilities are
mapped to the output layer of the BBN, where the nodes
correspond to the recovery actions Ar. An edge exists
between the nodes in these two layers if the corresponding
recovery action can lead to a transition to a safe state for
the derived RIF.

3.2 Partially observable Markov decision process (POMDP)
modeling

In this section, we describe the finite-state, discrete
POMDP model, which is constructed to represent the
states crucial for the risk mitigation of an ASV. The
POMDP framework facilitates sequential decision-making
in an environment characterized by noise and uncertainty,
where only a partial view of the system’s state is available.

Table 2. The input RIFs with their states and
the corresponding input sources of the BBN

Input risk-
influencing factors
(RIFs)

States Input sources

Communication link
Healthy, Broken (0.05,
0.9)

Communication chan-
nel

Fairway constraints
Low , Moderate, Strict
(0.1, 0.55, 0.9)

ENC, Bathymetry
data

Traffic density
Low, Medium, High
(0.1, 0.55, 0.9)

AIS

Navigational sensors
health

Reliable, Unreliable
(0.05, 0.9)

Sensor monitoring
module

Weather conditions
Light, Moderate,
Rough (0.1, 0.55, 0.9)

Onboard sensors,
Radio/satellite-based
services

Vessel speed
Low, Medium, High
(0.1, 0.55, 0.9)

Onboard sensor (e.g.
IMU)

Instead of having access to precise state information, the
model can deal with potentially imperfect observations.
The model is defined as a tuple P = ⟨S,A, T,R,Ω, O, γ⟩,
where S denotes the state space of the POMDP model
given by S = {s1, s2, . . . , sn}, for n vessel states. The state
space is further partitioned into the previously identified
set of states, such that S = {Su, Sr}. To simplify the
modeling of the POMDP, we only consider the unsafe and
recovery states, since only these states are involved in the
risk mitigation process. An action space can be defined
as a finite set, given by A = {a1, a2, . . . , am}, with m
representing the total number of actions. It corresponds
to the actions performed by the vessel control system
that lead the vessel to another state. To highlight the
new state resulting from performing a specific action, a
similar partitioning of the action space is performed such
that A = {Au, Ar}. Further, T represents the transition
function, which comprises the probability of transitioning
to a state given the current state and an action, defined
as T : S × A × S −→ [0, 1]. R represents the reward
function used to favor certain actions over others, defined
as R : S × A× S −→ R. O is the finite set of observations,
and Ω is an observation function that is used to capture
the uncertainty in determining the current state, defined
as Ω : S ×A×O −→ [0, 1]. Finally, γ ∈ [0, 1] is the discount



factor used to consider the importance of future rewards.
The initialization of the aforementioned properties of the
POMDP model forms steps 4-5 of Algorithm 1.

Throughout the decision-making process, a posterior dis-
tribution over the potential states is maintained and con-
tinually updated by utilizing the actions taken and obser-
vations gathered, referred to as the belief state b(s). In
the MCTS algorithm, a tree of possible actions and the
resulting observations is constructed, guided by the Upper
Confidence Bound (UCB) formula given by

UCB = X̄j + C

√
2 lnN

nj
, (2)

where X̄j represents the average reward of the j−th node
in the tree, N is the total number of simulation runs,
nj is the number of visits to the node j, and C is the
exploration parameter. By using this formula for action
selection, the MCTS algorithm balances exploration and
exploitation to build a tree that represents the possible
outcomes and their respective values. Finally, an optimal
action is selected based on the maximum expected reward
and forms the SCS, calculated as

SCS = arg max
a∈Ar

R(b′, a) + γ
∑
s′∈S

V (b′(s′))T (s, a, s′), (3)

where V (b′(s′)) represents the value function at the belief
state b′. The vessel’s guidance and control systems can
adapt to the identified SCS by switching between vari-
ous operation modes. The design of the switching logic,
however, lies beyond the scope of this work. The MCTS
algorithm and the SCS calculation process are outlined in
steps 6–12 of Algorithm 1.

4. CASE STUDY: RISK MITIGATION FOR AN
INLAND WATERWAY SCENARIO

In this section, a case study is conducted to illustrate the
proposed method tailored to the safety challenges faced by
autonomous inland vessels navigating through constrained
waterways. The considered scenario is detailed next.

4.1 Description of the scenario

In this case study, we will only focus on the occurrence of
the unsafe control action Au1

. We explore a scenario where
this action originates due to a fault in the onboard GNSS
sensor, a fault that is diagnosed by the vessel’s sensor
monitoring module (see e.g., Dhyani et al. (2024)). Con-
currently, rough weather conditions and moderate nearby
traffic prevail. All other conditions are assumed to be in
a moderate or medium state. The BBN processes these
inputs to produce the corresponding output risk proba-
bilities, as detailed in Table 3. Further, to determine the
transition probabilities for the given scenario, we utilize
the output risk probabilities computed by the BBN. Given
that the probabilities P3 and P4 are notably high and P2

is significantly greater than zero, this suggests a scenario
with reduced safe navigational options, substantial uncer-
tainty in the measurement of navigational states, and low
trajectory tracking performance. Consequently, based on
our knowledge of the scenario, we assign high probabili-
ties to actions Ar2 , Ar3 , Ar4 , and Ar6 , leading to a risk-
mitigated state (Sr1/Sr2). Regarding the rewards struc-
ture, transitions to fail-safe vessel states resulting from

Table 3. Input RIFs and derived RIFs risk
probabilities for the BBN

Input RIFs State Risk Probability

Communication link Healthy 0.05

Fairway constraints Moderate 0.55

Traffic density Medium 0.55

Navigational sensors health Unreliable 0.9

Weather conditions Rough 0.9

Vessel speed Medium 0.55

(P1, P2, P3, P4) (0.05,0.2722,0.81,0.495)

Table 4. The transition probabilities and re-
wards for the POMDP model for the given

scenario

Current state s Action a Next state s′ R T

Su1

Ar1 Sr1 +5 0.55
Ar1 Su2 -5 0.225
Ar1 Su3 -5 0.225
Ar2 Sr1 +10 0.75
Ar2 Su2 -5 0.125
Ar2 Su3 -5 0.125

Su2

Ar3 Sr1 +5 0.9
Ar3 Su4 -10 0.1
Ar4 Sr2 +3 0.95
Ar4 Su4 -10 0.05
Ar5 Sr1 +5 0.75
Ar5 Su4 -10 0.25

Su3

Ar4 Sr2 +3 0.95
Ar4 Su4 -10 0.05
Ar6 Sr1 +10 0.85
Ar6 Su4 -10 0.15

any state any action same state -1 -

fail-safe control actions (Ar1 , Ar3 , Ar5) are assigned lower
rewards compared to those leading to a fail-operational
state. Further, a state transition on taking the action Ar4
is allocated a smaller reward than for the rest of the fail-
operational control actions. This approach is adopted to
discourage excessive dependence on remote or onboard
crew intervention. Finally, a transition that results in the
vessel remaining in the same state in the subsequent time
step incurs a minor penalty to promote proactive risk mit-
igation. The resulting transition probabilities and reward
values are mentioned in Table 4.

4.2 Simulation results

In this subsection, we present the results of the POMDP
model-based simulation and testing. The model is initial-
ized at the unsafe state Su1 (Root node), resulting from
taking the unsafe action Au1 , and the simulation runs until
one of the terminal states is reached. The observations are
modeled as states with an additional noise component by
considering a 5% probability of receiving a false observa-
tion. Further, the initial belief is set as the state Su1

with
a 90% probability. The discount factor is selected to be
equal to 0.95, and the number of particles utilized by the
MCTS algorithm is selected as 100.

We test the proposed method for a total duration of
20 epochs. Each epoch constitutes 1000 simulation runs
performed to compute the Monte Carlo decision tree
starting from the given initial state. After each epoch,
the belief of states and the search tree are updated. As a
result, the safe actions are identified for the given scenario.
In total, the process ends in a single epoch ten times,



Fig. 2. POMDP model for the given scenario

whereas in the rest of the cases, it took two epochs to
reach a terminal state. Following are the resulting state-
action pairs obtained during the testing phase.

(1) Su1 −→ Ar2 −→ Sr1 (10 times, 1 epoch long).
(2) Su1 −→ Ar2 −→ Su3 −→ Ar6 −→ Sr1 (4 times, 2

epochs long).
(3) Su1 −→ Ar2 −→ Su2 −→ Ar3 −→ Sr1 (1 time, 2

epochs long).

As shown above, in all 20 epochs of testing, a safe state
is ultimately reached. The algorithm thereby identifies the
following SCSs for the hazardous situations considered:

(1) Su2 : Keep position (DP control strategy is selected)
(Ar3)

(2) Su3 : Vessel’s speed is reduced (Ar6)

The SCS will vary based on incoming observations, as-
signed rewards, and transition probabilities.

5. CONCLUSIONS

In this paper, a POMDP model-based method for the
online risk mitigation of autonomous inland vessels is
introduced. Firstly, the hazards impacting the vessel’s con-
trol capabilities, which can lead to collision or grounding,
were identified. Furthermore, in the proposed method,
by integrating the identified unsafe control actions with
recovery (fail-safe and fail-operational) actions within a
sequential decision-making framework, an SCS that leads
to an MRC was obtained. Following the provided strategy
thereby improves the ASV’s planning and control system’s
capability to navigate complex and uncertain maritime en-
vironments. Case study results for an autonomous inland
vessel navigating in a constrained waterway are presented
to demonstrate the capability of the proposed method in
calculating an SCS and mitigating the risk of a hazardous
situation. A limitation of the proposed method is that it
relies on expert knowledge for determining the state tran-
sition probabilities from the computed risk probabilities.
Future research will explore data-driven state transition
modeling while incorporating safety constraints.
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